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The trapping of linear water waves over two-dimensional topography is investigated 
by using the mild-slope approximation. Two types of bed profile are considered: a 
local irregularity in a horizontal bed and a shelf joining two horizontal bed sections at 
different depths. A number of results are derived concerning the existence of trapped 
modes and their multiplicity. It is found, for example, that the maximum number of 
modes which can exist depends only on the gross properties of the topography and 
not on its precise shape. A range of problems is solved numerically, to inform and 
illustrate the analysis, using both the mild-slope equation and the recently derived 
modified mild-slope equation. 

1. Introduction 
The existence of trapped modes in linearized water wave theory has been known 

since the work of Stokes (1846). However, it is only recently that the wide variety 
of circumstances in which wave trapping can occur has become apparent. Evans & 
Kuznetsov (1996) give a comprehensive review of recent developments in the general 
area of water wave trapping. 

This paper is concerned with one particular wave trapping mechanism : irregularities 
in the bed level. To describe the situation we envisage explicitly, we refer to Cartesian 
coordinates with z directed vertically upwards and the x- and y-axes lying in the 
undisturbed free surface. We suppose that the bed profile has a constant cross-section 
in the y-direction, given by z = -h(x). Further, we assume that h(x) takes constant 
values outside a finite interval, so that either there is a local perturbation on an 
otherwise horizontal bed or there is a shelf of finite extent joining two horizontal 
bed sections at different depths. We seek waves of length 2n/m which propagate in 
the y-direction with angular frequency 0. Such a wave is said to be trapped if its 
energy per unit length of the y-axis is finite. In other words, the wave is trapped over 
the bed undulations and its elevation decays as 1x1 --+ co. The problem thus posed 
is an eigenvalue problem, in which either B or m can be regarded as the eigenvalue 
parameter, the other being assigned. 

Previous work in this area has been principally concerned with the existence of 
trapped modes and the implied non-uniqueness of solutions of the corresponding 
forced wave problems, and operator theory provides a natural tool for this purpose. 
Thus, Jones (1953) established the existence of trapped modes in the presence of a 
symmetric ridge protruding from a horizontal bed, whilst Garipov (see Lavrentiev & 
Chabat 1973) considered ridges of arbitrary cross-section. 

More explicit information can be obtained if the shallow-water approximation is 
invoked and this is the basis of an examination of trapped waves given by Mei (1983). 
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LeBlond & Mysak (1978) consider a number of wave trapping mechanisms for both 
rotating and non-rotating shallow flows. 

In the case of symmetric bedforms, contact may be made with so-called edge waves. 
Thus, for trapped modes which are also symmetric, a rigid vertical barrier (a ‘cliff’) 
may be inserted along the axis of symmetry of the topography, from the bed to the 
free surface. The waves trapped above the topography then fall into the category 
described as edge waves. In a recent important paper Bonnet-Ben Dhia & Joly (1993) 
have considered a range of edge waves, including those in the class just described, 
and have used operator theory to derive a number of conditions under which such 
waves can exist. 

Here we consider the trapping of waves over topography by invoking the mild- 
slope approximation. This has the effect of reducing the underlying problem to one 
of Sturm-Liouville type, allowing numerical computations to be carried out which 
illustrate the associated analysis. The approximation also permits us to consider 
the topography, mentioned earlier, which consists of an arbitrary shelf between two 
different horizontal bed levels and which has evidently not been examined previously 
in the context of wave trapping. 

In a recent re-appraisal of the mild-slope approximation, Chamberlain & Porter 
(19954 have derived the modified mild-slope equation by using a particular trial 
function in a variational principle equivalent to the full linear problem. This new 
equation (which is given explicitly later) reduces to the familiar mild-slope equation if 
terms which are considered to be small on the basis of the mild-slope approximation 
(h’ << kh in the notation given later) are deleted. However, these terms can be 
significant, as shown by Porter & Staziker (1995) who have also demonstrated that 
the original mild-slope equation may be used for slopes up to one in one, extending 
the estimate of one in three given by Booij (1983). Porter & Chamberlain (1996) have 
recently compared the mild-slope approximation with other approximation methods 
for wave motion over topography. 

We consider a generic approximating equation in $2, which includes the mild-slope 
and modified mild-slope equations, and use it to establish some general properties of 
trapped modes. In 93, we examine the special case of periodic topography which is 
significant in forced wave problems (see, for example, Chamberlain & Porter 199527). 
The general results of 92 are applied to the mild-slope equation in 94 and lead, for 
instance, to a bound on the maximum number of trapped modes which can exist for 
a given frequency, expressed only in terms of the gross properties of the topography. 
Numerical results are presented in $5 for the mild-slope and modified mild-slope 
equations and for a number of bed profiles. These results are used to illustrate 
various aspects of the theory and to give graphical representations of some of the 
analytic properties. 

2. The basic problem 
We consider the class of approximations to wave motion over an uneven bed 

in which the free-surface elevation is given by Re{q(x, y)eciUt), where the angular 
frequency 0 is assigned and q satisfies the equation 

v-uvq f v q  =o ,  
where V = (d/dx,d/dy). The functions u > 0 and v are given and depend on the 
undisturbed depth H ( x , y )  of the fluid. In particular, in regions where the bed is 
horizontal, u and u are constant with v = k2u, where k ,  the wavenumber, is a constant 
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z = o  b X  4 4 4 

FIGURE 1. Definition sketch. 

depending on the depth of the bed. Anticipating the dispersive properties associated 
with the particular examples of (2.1) we shall refer to later, we assume that k ( H )  is a 
decreasing function. 

The structure we have described includes the mild-slope equation and the modified 
mild-slope equation, which we shall refer to explicitly in due course. 

We are concerned here with two-dimensional topography in the sense that 

H(x,y) = h(x) (-co < x < co,-co < y < a). 

We further assume that h(x)  and h'(x) are continuous and that 

ho and hl being constants. Ultimately, we shall consider two basic types of topography: 
a localized irregularity in an otherwise horizontal bed (so that ho = h l ) ,  and a shelf of 
arbitrary profile joining two semi-infinite horizontal bed sections at different depths 
(taking hl > ho for definiteness in this case). 

Figure 1 illustrates the general situation; h,,,, and h,,, have the obvious definitions 
(given explicitly in 94) and are referred to repeatedly later. In specific examples 
considered later h,,, may be equal to hl  which, in turn, may be equal to ho. However, 
as we shall see, it will be necessary that h,,, < ho. 

The trapped modes we seek are those for which 

q(x, y 1 = X(x)e'"' > (2.3) 

X ( x )  + 0, 1x1 ---f a. (2.4) 

where m is a real number which we can take to be non-negative, and 

We thus have to solve the eigenvalue problem consisting of (2.4) together with (2.1) 
reduced to the form 

( U X ' ) '  + (u  - U n 2 U ) X  = 0 (-co < x < co). (2.5) 

On each interval where h is constant (2.1) simplifies to 

X" + (k2  - m2)X = 0, 

where k = k ( h ) ,  and (2.2) therefore implies that 

where al = (m2 - k;)1'2, k j  = k ( h j )  for j = 0,l and ao, al are constants. In view of 
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(2.4) we require 

since ko 2 kl by hypothesis. 
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m > ko, (2.7) 

The core of the problem is thus to find non-trivial solutions of 

(ux’)’ + (Y - m2u)X = o (0 < x < t) (2.8) 
which match appropriately with (2.6). Clearly, X ( x )  and X’(x)  must be continuous 
everywhere to ensure continuity of the free surface and its slope. It should be 
remarked here that a consistent application of the mild-slope approximation requires 
that the free surface slope be discontinuous at locations where the bed slope is 
discontinuous (see Porter & Staziker 1995). We have imposed the continuity of h’(x) 
to eliminate unrealistic free-surface profiles. (In the corresponding scattering problem, 
with a wave train incident from x = -00, say, local inaccuracies in the surface profile 
can be tolerated, as the principal interest is in the far wave field.) The continuity of 
X and X’ used in conjunction with (2.6) gives boundary conditions for (2.8) in the 
form 

X’(0)  - aoX(0) = 0, X ’ ( t )  + cllx(e) = 0. (2.9) 
Some information about the existence of non-trivial solutions of the boundary 

value problem consisting of (2.8) and (2.9) follows from standard differential equation 
theory. To exploit this fact, we suppose that u(x) > 0 in some subinterval of [ O , t ] ,  at 
least, and define the positive number M by 

If we now define A by 

then (2.8) takes the form 

2 2 m = M  - A  

(UX’)’ + (nu - (M2U - u))X = 0, 

(2.10) 

(2.11) 

which, with (2.9) also expressed in terms of A, constitutes a standard Sturm-Liouville 
problem. We infer (from the treatment given by Ince 1944, for example, who allows 
for the presence of 2 in the boundary conditions) that there are infinitely many 
positive eigenvalues Aj  which can be arranged in increasing order of magnitude so 
that 

0 < l o  < l l  < 1 2 ‘ - ‘ .  

Further, if the corresponding eigenfunctions are denoted by XO,  X I ,  X,, . . . then X j ( x )  
has exactly j zeros for 0 < x < L‘. 

The problem in its original form therefore has prospective eigenvalues given by 
m? = M 2  - Aj satisfying M > mo > ml > m2 ...., of which only those which also satisfy 
(2.7) are admissible. We now see the significance of the assumption M 2  > 0 and that 
the stronger condition M > ko is actually necessary for the existence of a trapped 
mode. If this condition is satisfied, appropriate solutions of (2.8) and (2.9) consist of 
at most the n eigenvalues mj ( j  = 0,1,2,. . . , n - 1) for some n 2 1, where 

M > mo > ml > . . . > m,-l > ko 3 m,, (2.12) 

together with the corresponding eigenfunctions XO,  X1 , .  . . , Xn-l, where X j  has exactly 
j zeros. 
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Of course, we have yet to establish a condition which ensures that rno > ko, so 
that at least one trapped mode can exist. This aspect is most easily dealt with by 
considering the problem consisting of (2.4) and (2.5). It can readily be shown that the 
functional 

(2.13) 

taken over all ‘suitable’ real-valued functions ((x), is stationary at 5 = X if and only 
if X satisfies (2.4) and (2.5). The stationary values of J ( < )  are the squares rn; of the 
eigenvalues, establishing the maximum principle J (  5) < mi, equality being attained 
at, and only at, 5 = XO.  

We therefore have 

This characterisation of the problem allows ‘weak’ solutions of (2.4) and (2.5) to 
be considered in which ((x) is required to be continuous and have a continuous 
derivative, and such that the integrals in (2.14) converge. At least one trapped mode 
exists if we can find such a ( for which L ( t )  > 0. Motivated by the need for simplicity 
and by the fact that the maximizer X O  of L(<) is known to be one-signed, we choose 
the test function 

sech(ax) (x < 01, 

(x > 0, 
5(x) = 1 (0 d x d 4, { sechp(t - x) 

L(a,P) = 1‘ 
where a and p are positive, real parameters. For this 5, the functional L(<)  takes the 
values of 

-f(uoa + u l p )  + (k :  - ko2)~IP-l + (2:  - kiu)dx 

U O K ’  + ~ 1 P - l  + udx l 
for a > 0 and p > 0, where ug and u1 denote the constant values of u for x < 0 and 
x > G respectively. 

The maximum value of L(a, 8) can be determined by elementary calculus. The case 
in which ko = k ,  is straightforward and it is found that this maximum is positive 
provided that 

l ( u  - k&)dx > 0. (2.15) 

Indeed, this condition follows directly from L(a, p )  by inspection. The corresponding 
calculation is a little more involved for ko > k l ,  leading to the condition 

f 

(v - k&)dx > 2ul [ ( k i  - k:)/3]1/2 (2.16) 
J O  

for the maximum value of L(<) to be positive, for the chosen test function. 
The inequality (2.16) is therefore a sufficient condition for the existence of at least 

one trapped mode in the case 12, 3 ho; it reduces to (2.15) if hg = hl. We comment 
on (2.16) later in relation to a specific application of the theory. 

Assuming that (2.16) is satisfied, we can obtain an estimate of the maximum 
number of modes which can exist, by using a comparison theorem in conjunction 
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with (2.8). Let p and q be constants satisfying 
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u > p > O ,  m 2 u - v > q  

in (0,e) and let the function Z ( x )  satisfy 

pZ” - q z  = 0 (0 < x < e). 

(2.17) 

Then, by Picone’s theorem (see, for example, Ince 1944), Z has at least one zero 
between two consecutive zeros of X .  This property follows from the inequality 

[ x z - l ( u Z x ’  - pxz’)];; > 0 (2.18) 

Noting that the inequality M > mo implies that q < 0, we first take the comparison 
which holds for 0 < x1 < x2 d e, with Z ( x )  non-vanishing for x1 < x < x2. 

function 

where o = (-q/p)’/2 and suppose that 
Z(x) = sin(ox), 

N n / o  < e < ( N  + ;>n/o 
for some positive integer N .  Then Z has exactly N zeros in (0, a), located at x = nn/w 
(n = 1,2.. . N) .  Therefore X has at most N + 1 zeros in (0,L‘). Suppose, however, 
that x1 is a zero of X such that N n / w  < x1 < t and take x2 = 8. Then, using 
X ’ ( l )  + a ~ X ( t )  = 0, Z ( e )  > 0 and Z‘( t )  > 0, we contradict (2.18), concluding that X 
has no such zero. Therefore X actually has at most N zeros in (0,e). In the case 

( N  + ;)?,c/o < e < ( N  + l )n /o  

we take the comparison function Z ( x )  = cos(wx). Using (2.18) it follows that X has 
no zero in (O,n/2o) or in ( ( N  + $)n/w,e)  and therefore it has at most N zeros in 
(0, t). A similar approach shows that X has no zeros in (0, L‘) if L < n/o. (The single 
comparison function sin(cox + 13) with n/2 < I3 < n encompasses all cases but is a 
little more intricate to use.) 

Recalling that the eigenfunction X j  has j zeros we conclude that if 

N n  < L‘(-q/p)”2 < ( N  + 1)n ( N  = 0,1,2.. .) (2.19) 

then at most N + 1 trapped modes can exist. To convert this result into a practical 
form requires the determination of constants p and q satisfying (2.17); in particular, 
the inequality m > ko must be used to deduce q. We remark here that an oscillatory 
comparison function is not available to obtain an estimate of the minimum number 
of trapped modes in a similar way, because the maximum value of m2u - v in (0, l )  
is positive. 

An alternative way of obtaining qualitative information about admissible solutions 
of (2.5) follows from a phase-plane analysis. This approach was used by Mei (1983) 
in the case of shallow-water theory. 

We replace (2.5) by the coupled equations 

UX’ = Y ,  Y’  = (m2U - V ) X  (-GO < x < co) (2.20) 

and note from (2.6) that 

Y = uoaox (-00 < x < O), Y = -UlalX (G < x < co) 
and that every trajectory in the ( X ,  Y )-plane representing a trapped mode must cut 
the coordinate axes orthogonally. We choose that part of the trajectory corresponding 
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FIGURE 2. Idealized phase portraits of X against Y = uX’. Sketch gives examples of how the 
trajectory departs from the origin in the first quadrant and returns to the origin in the second or 
fourth quadrants. 

to ---GO < x < 0 to be in X > 0, Y > 0; the part corresponding to t < x < a3 is then 
either in X > 0, Y > 0 or in X < 0, Y > 0. 

For a continuous solution to be possible therefore, Y’ must change sign at least 
twice where X # 0, implying that m2u - v must change sign at least twice in the 
interval (0,e). Therefore we must have min(m2u - v )  < 0 in (0,f) or m < M ,  using 
(2.10). We again conclude that max(v/u) > 0 is necessary for a trapped mode to exist 
and that (if this condition is satisfied) every eigenvalue is such that ko < m, < M .  

Figure 2 shows typical trajectories for X o  and XI for a simple topography, with, 
in this case, m2u - 2) changing sign exactly twice in (0 , t ) .  The trajectory representing 
Xi cuts the Y-axis j times before returning to the origin on one of the two available 
paths. In other words, the trajectory corresponding to X,j (X*,+l) returns to the origin 
in the second (fourth) quadrant. These remarks accord with the prediction of Sturm- 
Liouville theory concerning the number of zeros of X,. More complicated topography 
will naturally result in more intricate trajectories, by increasing the number of zeros 
of m2u - v in (0,e) - see, for example, the problem considered in $5.3. 

We conclude this section by giving an alternative version of the problem, in which 
we normalize the solution of (2.8) and (2.9) by choosing X ( 0 )  = 1 (noting that there 
is clearly no non-trivial solution satisfying X ( 0 )  = 0 and hence X’(0)  = 0). We then 
have to solve the initial value problem 

(ux’)’ + (v - m2u)X = o (x > o), X ( O )  = I, ~ ’ ( 0 )  = a0 (2.21) 

(2.22) 

This formulation provides the basis for the computations we describe later and allows 
us to analyse the trapping properties of a certain class of topography, as we show next. 

and ensure that the solution satisfies the the equation 

F ( m )  = X ’ ( t )  + a I X ( t )  = 0. 

3. Periodic topography 
In this section we consider the case in which the depth function h is periodic in the 

interval (0 , t ) .  We suppose that 8 = N p p  for some N p  E IN and that h(x )  = h(x  + np) 
for 0 < x < p and n = 1,2,. . . , N p  - 1. This depth profile represents N p  periods 
of a particular bed shape. Continuity of h and h’, taken with (2.2), shows that 
ho = h(np) = hl for n = 1,2,. . . , N p  - 1; it follows that a0 = X I .  

We recall that our objective is to find eigenvalues mi such that there exist non-trivial 
solutions of the initial value problem (2.21) subject to the eigenvalue constraint (2.22). 
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Our aim is to avoid the computationally expensive task of solving (2.21) in the 
whole interval 0 d x d N p p .  Chamberlain & Porter (199527) have shown how this 
objective can be achieved for wave scattering problems and here their approach is 
adapted to the eigenvalue problem in hand. We show that only the solutions of a 
simple pair of initial value problems, in the smaller interval 0 < x < p, are required. 
Suppose that 

(uxi)’ + o x j  = m 2 q j  (x > 0, j = 0, I), 
xo(0) = x’l(0) = 1, xm = Xl(0) = 0, 

from which we easily see that X = 10 + a0x1, provided that the eigenvalue constraint 

is satisfied. The superscript notation adopted in (3.1) indicates how many periods are 
under consideration. 

Periodicity of h implies that u and u are also periodic. It follows that xj(x + np) 
( j  = 1,2) is a linear combination of xo(x) and xl(x) for x E [O,p] since they are 
solutions of the same differential equation. Indeed, it follows that 

for n = 1,2 ,..., N p  - 1. 

x = p into equations (3.2), and their derivatives, yields 
Let a, = xo(np), b, = xb(np), c, = xl(np) and dn = x i (np)  for brevity. Substituting 

} (n 3 11, (3-3) 
an+l = alan + clbm 
cn+l = alcn + cldn, 

bn+l = blan + dlbm 
&+I = blcn + dldm 

where, as a consequence of our assumed initial conditions, we have a0 = do = 1 and 
bo = co = 0. 

Rearranging (3.3) gives 
an+2 - 2yan+l + an = 0 

where y = ;(al +dl). The quantities b,, cn and d, satisfy the same difference equation 
which is readily solved to show that 

where C, = sin nO/ sin 0 in which 0 = c0s-l y E C is defined such that 0 < Re(0) d 7c 
and Im(0) 2 0. (The case in which 0 = 0 can be dealt with separately and it is easy 
to show that C, = n.) 

Use of (3.4) allows us to write the eigenvalue equation (3.1) as 

from which it is clear that solutions of the differential equation are only required for 
0 < x < p. The eigenfunction X = xo + aoxl can also be found from solutions on the 
smaller interval, for (3.4) used in conjunction with (3.2) implies that 

X ( x  + n ~ )  = (X(P)XO(X) + X’(P)XI(~)} on - X(x)an-l 
in which n = 1,2,. . . , N p  - 1 and 0 d x ,< p. 
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There is a special case which is of interest here. If a1 = dl = 1 and bl = c1 = 0 
it follows immediately that 8 = 0 and also that a, = d, = 1, h,, = c, = 0 for all 
n = 0,1,2,. . . , N p .  In this case xo(x), xl(x) and consequently X ( x )  are periodic (with 
period p) for x E [O,e], i.e. each period of the bedform has an identical free-surface 
profile above it. 

Finally in this section we note that the result concerning an upper bound on the 
number of trapped modes given by equation (2.19) carries over to periodic beds in a 
trivial way. The quantities p and q in equation (2.19) are independent of N p ;  indeed 
only e = N p p  depends on the number of periods and it does so in an explicit way. 

4. Application to the mild-slope approximation 
The mild-slope equation, originally derived by Berkoff (1973) and independently by 

Smith & Sprinks (1973), is an example of (2.1). It arises by approximating the vertical 
structure of the fluid motion and averaging over the fluid depth in a process which 
can be formalized by using Galerkin’s method (see Chamberlain & Porter 1995~).  
For the two-dimensional topography under consideration here, with h(x)  denoting 
the local undisturbed depth, the coefficients u and v can conveniently be expressed in 
the forms 

u(h) = tanh(kh){ 1 + 2khcosech(2kh))/2k, v (h )  = k2u(h), (4.1) 

v = k tanh(kh). (4.2) 

where the local wavenumber k(h) is defined implicitly by the dispersion relation 

We regard v = 02/g as an assigned parameter and it is easily checked that k(h) is 
a decreasing function at each value of v ,  as assumed in $2. The derivation of the 
mild-slope equation assumes that h’ << kh for all x. 

Referring to (2.10) we see that, in this application, M = max{k(h(x)) : 0 d x d /} 
and therefore the necessary condition M > ko for a trapped mode to exist can be 
expressed as 

hmin < ho, hmin = min{h(x) : 0 < x < e}. (4.3) 
Thus, a trapped wave is possible only if part of the bed projects above the (higher of 
the two) bed levels at infinity. 

The sufficient condition (2.16) for the existence of at least one trapped mode takes 
the slightly modified form 

This shows that a trapped wave exists above any elevation on an otherwise flat bed 
since h(x)  < ho implies that k > ko and the right-hand side of (4.4) reduces to zero in 
this case. A trapped wave will also exist if there is a depression in a horizontal bed, 
provided that there is also a compensating elevation which makes the integral on the 
left of (4.4) positive. In this case, and for ho # hl ,  the condition (4.4) can be checked 
numerically for a given bedform and a given value of v .  However, it is more directly 
revealing in certain limits. Thus, for large vh, we find from (4.1) and (4.2) that 

k = v{ 1 + e-2vh + O(e-4vh)}, u = { 1 + O(~he-’”~))/2v. 
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To leading order for large vho, therefore, (4.4) takes the form 
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(4.5) 

In the case ho = hl this inequality reduces to 
< PC 

which is automatically satisfied for sufficiently large vho by virtue of (4.3). Thus 
hmin < ho is both necessary and sufficient for the existence of at least one trapped mode, 
if vho is large enough. This result is given, for edge waves and using full linear theory, 
by Bonnet-Ben Dhia & Joly (1993). We also note that, since M-ko = k(hmin)-ko + 0 
as vho -+ 00, the trapped modes we are seeking here (having smooth free-surface 
profiles) are formally excluded in this limit, because of (2.12). 

We also find from (4.5) that the condition hmin < iho is sufficient to satisfy (4.4) and 
ensure that at least one trapped mode exists, for large enough vho and any hl > ho. 

The case in which v h  << 1 corresponds to shallow-water theory and (4.1) and (4.2) 
can be approximated, to leading order, by 

u = h ,  V = V ,  (4.6) 
which reduce (4.4) to the form 

For ho = hl  and vho << 1, the sufficient condition (4.4) can therefore be expressed as 

Bonnet-Ben Dhia & Joly (1993) have proved, again for edge waves and using full 
linear theory, that (4.7) is necessary and sufficient for a trapped mode to exist at every 
v > 0. 

To apply (2.19) in the present case we note by using (2.7) and (4.1) that 

m2u - v > (k,2 - k2)u. 

It can be shown that the function (k; - k2)u increases with h at each value of v and, 
referring to (2.17), we can therefore take 

4 = (ki - k2(hmin))u(hmin)-  

To assign p we observe that u(h) -+ 0 as h + 0 and u(h) + 1/2v as h -+ 00. We can 
also show that u(h) has a maximum value (where 3 sinh(2kh) = 2kh(cosh(2kh) - 2)). 
Thus the minimum value of u(h) for a given bedform h(x) is 

p = min(u(hmin), u(h,,,)), h,,, = max(h(x) : 0 < x < t}. 
It now follows from (2.19) that at most N + 1 trapped modes can exist if 

N71 < /D/ho < ( N  + 1)71 ( N  = 0,1,2,. . .), (4.8) 

(4.9) 

where D is the dimensionless quantity defined by 

a2 = h i u ( h m i n ) ( k 2 ( h m i n )  - k z ) /  min(u(hmin), ~ ( h m a x ) ) .  
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We note that, as 9 depends only on the gross properties of the topography, the 
maximum number of modes is the same for every topography having the same values 
of h,,,/ho and hmax/ho, for fixed L‘/h, and vho, and this maximum number increases as 
8/ho increases, with the other parameters held constant. Further, using the stated prop- 
erties of k,  u and ( k i  - k2)u, it follows from (4.9) that 9, and therefore the maximum 
number of modes, remains the same or increases as h,,,/ho decreases and as hmax/ho 
increases, in each case with the other parameters remaining constant. We also see from 
(4.8) that, for every topography, there is at most one mode if ~ / / . E o  is small enough. 

To examine the effects of frequency changes on a fixed topography we note that 
02 2 2(vho)2(e-2”h7mn - e-2vh0) 

for large vho. Thus, at most one trapped mode can exist if vho is sufficiently large. 
Taking this observation with our earlier remarks, we have shown that, if h,,, < ho, 
one and only one trapped mode can exist for large vho, in the case ho = hl .  

Using the approximations (4.6) we have 

Q 2  ‘V vho(h0 - hrnin)/hmn 

for small vho, so that at most one trapped mode can exist, for any topography, if vho 
is small enough. 

Further, since Q > 0 for 0 < vho < co and 9 -+ 0 as vho + 0 and as vho + co, then 
it has at least one maximum value for fixed h,,,/ho, h,,,/ho and &/ho. It follows that 
there is at least one frequency band within which a given topography can support 
the largest number of trapped modes. Numerical evidence indicates that there is only 
one such band; this can be confirmed analytically from (4.9) in the simpler case for 
which u(h,,,) < 4 h m a X ) .  

Chamberlain & Porter (19954 have recently derived the modified mild-slope equa- 
tion which also has the form of (2.1), with u(h )  and k ( h )  still given by (4.1) and (4.2), 
respectively, but with v replaced by 

2’ = k2u + u(l)h” + U(2)h’2 (4.10) 

in the one-dimensional context. Here 
sech2( k h)  

4(K + sinh(K)) 
u(”(h) = {sinh(K) - K cosh(K)) , 

ksech’(kh) 
12(K + ~ i n h ( K ) ) ~  

d2’(h)  = {K4 + 4K3 sinh(K) - 9 sinh(K) sinh(2K) 

+ 3K(K + 2sinh(K))(cosh2(K) - 2cosh(K) + 3 ) } ,  

in which K = 2kh. The additional terms arising in v are small on the basis of the mild- 
slope approximation h’/kh = O ( E )  with X’/kX = 0(1), where E << 1. Nevertheless, 
these terms increase the range of slopes over which the mild-slope approximation 
is applicable (see Porter & Staziker 1995). Because of the additional complication 
introduced by (4.10), we have confined ourselves to a numerical comparison of the 
mild-slope and modified mild-slope equations, which is remarked on in the following 
section. 

5. Numerical procedure and results 
We briefly describe the computational procedure that has been implemented to 

produce the results presented in this section. It is convenient for this purpose to use 
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the function Y = uX’ so that the initial value problem (2.21) may be written as the 
first-order system y’ (x)  = f(x,y) where y = ( u X ,  Y ) T  and f = ( Y ,  (m2u - u ) X ) ~  with 
initial condition y(0) = (1, aou(0))’. Approximation methods for such initial value 
problems are well documented (see Lambert 1992, for example) and are not discussed 
here. 

The eigenvalue equation to be satisfied is given by (2.22) and may now be written 
in the form 

u ( t ) F ( m )  = Y (t) + a l u ( t ) X ( / )  = 0. 

It is therefore clear that the problem in hand is the familiar one of finding roots mj 
of the nonlinear equation F ( m )  = 0 (recall that a(/) # 0). As noted in 52 we are only 
interested in zeros of F which lie in the interval (k0,M).  

The numerical procedure adopted is to scan the interval (ko, M )  for pairs of points 
between which 9 changes sign. (It is a consequence of the differential equation theory 
referred to in $2 that the zeros of 9 are simple.) Each evaluation of 9 requires 
us to approximate the solution of the first-order system described above. Pairs of 
bracketing points, when found, are used in an application of the well-known regula 
fulsi method (see, for example, Phillips & Taylor 1973, p. 157 et seq) to converge to 
each eigenvalue. 

The numerical results presented are for a selection of bed topographies, these being 
localized elevations with the property that ho = hl and one example in which ho < hl. 

The results obtained for these bed shapes are typical of those for a wide range of 
problems and by concentrating on a small selection we are better able to analyse in 
detail the problems that are considered. 

The first example we consider is that of a symmetric cosine elevation. Values of 
mj /v  are given for three choices of the (dimensionless) parameters v t  and vho. It is 
verified that the number of eigenvalues does indeed depend on these parameters. 

The second example concerns a topography joining two regions of different depths. 
For the choice of parameters considered phase portraits of X j  against Y j  are given as 
well as free-surface plots of the eigenfunctions X j .  

In 55.3 we employ the replication formulae derived in 53 to consider a topography 
composed of six repetitions of an asymmetric elevation. 

In 55.4 and $5.5 we present examples which verify the predictions arising from 
equation (2.19) concerning an upper bound on the number of trapped modes. 

5.1. A symmetric elevation 
Here we consider the depth profile 

h(x)  = ho (1 - E + E C O S ( ~ T C X / ~ ) )  (0 < x < 8)  

which represents a symmetric elevation for which hmin = ho( 1 - 2 ~ ) .  For the purposes 
of results presented in this subsection we consider E = $. 

Table 1 gives results corresponding to three choices of the dimensionless parameters 
vt and vho using both the mild-slope equation and the modified mild-slope equation. 
In each case we give all mj E ( k o , M )  (scaled with respect to v for greater generality) 
and note that the results obtained are very similar for the modified and unmodified 
mild-slope equations. This is to be expected, for the quantity h’/kh (supposed to be 
small in the mild-slope approximation) attains the maximum values 0.03, 0.008 and 
0.002 respectively (to 1 significant figure) for the three parameter sets considered. 
Indeed it is verified in the table that the smaller h’/kh is the smaller the difference 
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2,o. 1 14,0.2 12,0.05 

MSE MMSE MSE MMSE MSE MMSE 
3.31604 3.31557 2.51610 2.51599 4.96966 4.96964 

2.42196 2.42189 4.84908 4.84907 
2.34675 2.34675 4.73876 4.73874 

4.64054 4.64054 
4.55838 4.55838 
4.50975 4.50975 

TABLE 1. Scaled eigenvalues m j / v  for the symmetric elevation and for a selection of parameter 
values. Results are given for the mild-slope equation (MSE) and the modified mild-slope equation 
(MMSE). 

I I I 

h 

1 

0 2 4 6 

vx 

FIGURE 3. Depth profile joining two different depths used in 55.2. 

between the two sets of results. Similar evaluations have been carried out for the 
other examples given below. 

5.2. A shelf joining two different depths 
Consider 

h(x )  = h,, - e ( x i x / l ) '  ( ~ ( x / L ' ) ~  - 4(1 + r)x/L' + 6a) (0 < x < t) 2a - 1 
in which 0 < a < and hl  > ho. This profile represents a smooth transition from 
the depth ho to the greater depth hl and is such that the minimum depth occurs at 
x / t  = a. Here we will consider the case in which h l /ho  = 1.25 and a = 0.4. This 
depth profile is shown in figure 3 .  The problem is fully prescribed once we choose 
vho = 0.04 and v /  = 6. In this example we will use the modified mild-slope equation. 

With these choices our numerical routine gives us upper and lower bounds on the 
eigenvalues as M = 5.38568~ and ko = 5.03357~ respectively. We further find that in 
this case there are two eigenvalues: mo = 5.27026~ and rnl = 5.07246~. 

Figure 4 shows the phase portraits of X against Y = uX' for each of the eigenvalues 
(cf. figure 2). We see that the behaviour predicted in $2 is verified here. Figure 5 
shows the corresponding plots of X against the (scaled) independent variable vx .  A 
portion of the exponential solution in (--XI, 01 u [6, co) is presented in each case and 
is shown to join smoothly with the numerically generated solution in [0,6]. We note 
that the prediction that the function X j  will have exactly j zeros is verified in this 
example. 
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FIGURE 4. Phase portraits corresponding to the two modes for the shelf problem. 
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FIGURE 5 .  Eigenfunction plots X j ( v x )  corresponding to the two admissible eigenvalues. 

5.3. Repeated asymmetric elevations 
Now we consider a bed that is periodic in the interval 0 < x < 8. Thus we set 
8 = N p p  and, for this example, choose a typical period to be given by 

h(x) = ho (1  - € + € cos(27c(x/p)*)) (0 d x d p). 

We choose E = so that at its peak the bed shape occupies 20% of the average 
quiescent depth. Thus, each period is an asymmetric version of the profile considered 
in 55.1. 

In this subsection we will again only consider one set of parameters and examine the 
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FIGURE 6. Phase portraits and free-surface plots for six periods of the asymmetric profile. 
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results obtained in detail. Let vho = 0.1, vp = 2 and N p  = 6 (so that v& = 12). We shall 
carry out our analysis of this problem using the modified mild-slope equation. Using 
the methods described in $3 we find that there are four eigenvalues: mo = 3.34328v, 
ml = 3.32188v, m2 = 3.28688~ and m3 = 3.24069~. Figure 6 shows phase portraits 
and, alongside, the free-surface plots Xj ( j  = 0,1,2,3). In this case we have only 
presented the numerically generated part of X but it has been checked separately that 
these functions join the exponentially decaying part of the solution smoothly. Indeed, 
this fact can be seen from the corresponding phase portraits on which the trajectories 
for -00 < x < 00 are shown. 

5.4. Three depth profiles 
Consider the three depth profiles 

h(')(x) = ho( 1 - E + E COS(~ZX//)), 
~'Z(~'(X) = ho( 1 - E + E C O S ( ~ ~ X ( /  - x ) / l 2 ) ) ,  
h(3)(x) = ho( 1 - E + E cos(n sin(2nx(d - x ) / d 2 ) ) ) .  

It is readily verified that min(h(j)) = ho( 1 - 2e) ( j  = 1,2,3) and that for each x E (0, &) 
h(j)(x) < h(j-')(x) ( j  = 2,3). The hump defined by h(j) is bigger for larger j .  These 
examples are, of course, artificial but they do serve to make an interesting point. 

Here we shall put e = and use the mild-slope equation for which the corre- 
sponding theory has been developed explicitly in $4. 

We have already observed that equation (2.19), which gives an upper bound on n, 
the number of trapped modes, takes into account only the gross properties of the 
underlying depth profile. The functions h(j) above are such that the quantities p and q 
appearing in (2.19) are independent of j for the mild-slope equation. It is intuitive to 
expect that the upper bound is tighter the larger j is since in this case approximating 
u by the constant p and m2u - u by the negative constant q is 'giving less away'. This 
subsection serves to confirm that intuition. 

Figure 7(a) gives numerically generated data showing values of n for h(') for a range 
of values of ho and d. The white region corresponds to parameter sets for which only 
one trapped mode exists. The palest grey region corresponds to n = 2, and so on. 
Figures 7(b) and 7(c) present similar data, but for h(2) and h(3) respectively. 

The fourth plot presents those points in the (v&,vho)-plane at which the upper 
bound given by equation (2.19) increases by one. For each vho therefore, the position 
of the curve gives a lower bound on the value of vd for which this increase occurs. The 
fact that this is a lower bound is verified by comparison with the other three diagrams. 
It is clear that the estimate given by (2.19) is accurate where n is small. Where n is 
large it is also rapidly varying and the estimate does predict this rapid variation. 

Notice that the predicted curves are better approximations to the edges of the 
shaded regions for h(j) the larger j is. This fact verifies our earlier prediction. 

5.5. Further examples 
Towards the end of $4 a number of properties were established, based on equation 
(2.19), concerning cases in which there is at most one trapped mode. (These properties 
depend on the values of vho and //ho and this influences how numerical data are 
presented later.) Here we verify those predictions for the depth profile considered 
in 65.2. 

Figure 8 is similar in intent to figure 7(d) in that parameter space is divided into 
regions according to the upper bound on n, provided by equation (2.19). Guided by 
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FIGURE 7. Plots (a-c) indicate values of n, the number of admissible eigenvalues, for a range of the 
dimensionless parameters vt and vho for the depth profiles described in the text. Plot (d )  shows the 
position of an analytic lower bound on vt for the positions where n increases. 
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FIGURE 8. Upper bounds on n, the number of trapped modes, for a range of 
the dimensionless parameters hole and vho. 

the observation of the preceding paragraph, in this case we consider the dimensionless 
parameters vho and hole. The contours become closer the smaller hole  is and only 
the first few are presented. 

The first thing we note from figure 8 is that there is clearly a value of hold above 
which there cannot be more than one trapped mode. For example, it is clear from the 
figure that if hole > 0.14 then there will be, at most, one trapped mode irrespective 
of the value taken by the other parameter. This observation agrees with the comment 
made in $4 that for every topography, there is at most one mode if / /ho is small 
enough. 

Furthermore it is evident that, for any hold, there is only one mode for small vho 
and large vho since the uppermost of the contours in figure 8 approaches zero in both 
these cases. This is in agreement with earlier results. 

6. Conclusions 
Wave modes trapped over a class of topography have been investigated by using 

the mild-slope approximation. In particular, an analysis of the mild-slope equation 
has led to the following results. 

(a)  For a trapped mode to exist, it is necessary that 

hmin < ho < hl. 

This condition is also sufficient for large enough vho. 
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( b )  For a trapped mode to exist for any v,  it is sufficient that 
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This condition is satisfied by every elevation on a horizontal bed. It is also satisfied 
if there is a depression in the bed (of infinite extent if hl > ho) provided that its effect 
is compensated by a ‘large enough’ elevation. 

(c) At most N + 1 trapped modes can exist if 

NZ < /L’/ho < ( N  + 1 ) ~  (N = 0,1,2,. . .), (6.1) 

where S Z ,  which depends only on the overall properties hmin, h,,,, ho and t of the 
topography and on the frequency through v, is given by (4.9). The maximum number 
of modes remains the same or increases as hmin decreases with h,,, fixed and as h,,, 
increases with hmin fixed; it increases with / for fixed maximum and minimum depths 
of the topography. If vho is small, at most one mode can exist. For a fixed topography, 
there is a finite frequency band which may support a maximum number of trapped 
waves. 

With the exception of (6.1), these results remain valid for edge waves along a cliff. 
In this case ho = h ,  and only the symmetric trapped modes transfer to edge modes. 

A selection of trapped-mode wavenumbers and the corresponding free-surface 
profiles has been given for certain bedforms, together with graphical representations 
of other aspects of the theory. On the basis of the performance of the mild-slope 
and modified mild-slope equations in wave scattering problems (see, for example, 
Porter & Staziker 1995), it is anticipated that the present calculations provide a good 
approximation to the wave modes given by full linear theory. 
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